Some remarks on index and entropy for von Neumann subalgebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fractal Von Neumann Entropy

We consider the fractal von Neumann entropy associated with the fractal distribution function and we obtain for some universal classes h of fractons their entropies. We obtain also for each of these classes a fractal-deformed Heisenberg algebra. This one takes into account the braid group structure of these objects which live in two-dimensional multiply connected space. PACS numbers: 05.30.-d; ...

متن کامل

Von Neumann entropy and majorization

We consider the properties of the Shannon entropy for two probability distributions which stand in the relationship of majorization. Then we give a generalization of a theorem due to Uhlmann, extending it to infinite dimensional Hilbert spaces. Finally we show that for any quantum channel Φ, one has S(Φ(ρ)) = S(ρ) for all quantum states ρ if and only if there exists an isometric operator V such...

متن کامل

Sufficient Subalgebras and the Relative Entropy of States of a von Neumann Algebra

A subalgebra Mo of a von Neumann algebra M is called weakly sufficient with respect to a pair (φ, ω) of states if the relative entropy of φ and ω coincides with the relative entropy of their restrictions to Mo. The main result says that Mo is weakly sufficient for (φ, ω) if and only if Mo contains the RadonNikodym cocycle [Dφ,Dω]t. Other conditions are formulated in terms of generalized conditi...

متن کامل

Some remarks on the arithmetic-geometric index

Using an identity for effective resistances, we find a relationship between the arithmetic-geometric index and the global ciclicity index. Also, with the help of majorization, we find tight upper and lower bounds for the arithmetic-geometric index.

متن کامل

Remarks on Complemented Subspaces of Von-neumann Algebras*

In this note we include two remarks about bounded (not necessarily contractive) linear projections on a von Neumann-algebra. We show that if M is a von Neumann-subalgebra of B(H) which is complemented in B(H) and isomorphic to M ⊗ M then M is injective (or equivalently M is contractively complemented). We do not know how to get rid of the second assumption on M. In the second part,we show that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the Japan Academy, Series A, Mathematical Sciences

سال: 1989

ISSN: 0386-2194

DOI: 10.3792/pjaa.65.323